OpenAI
Coralogix's AI Observability integrations enable organizations to gain deep insight into their AI applications, helping them monitor, analyze, and optimize performance across the stack. Through integrations with OpenAI, Coralogix delivers end-to-end visibility into AI workloads, supporting proactive issue detection and efficient performance tuning.
Overview
This library offers customized OpenTelemetry instrumentation for OpenAI SDK, optimized to support large language model (LLM) application development with streamlined integration, detailed production tracing, and effective debugging capabilities.
Requirements
- Python version 3.8 and above.
- Coralogix API keys.
Installation
Run the following command.
Authentication
Authentication data is passed during OTel Span Exporter definition:
- Select the endpoint associated with your Coralogix domain .
- Use your customized API key in the authorization request header.
- Provide the application and subsystem names.
from llm_tracekit import setup_export_to_coralogix
setup_export_to_coralogix(
coralogix_token=<your_coralogix_token>,
coralogix_endpoint=<your_coralogix_endpoint>,
service_name="ai-service",
application_name="ai-application",
subsystem_name="ai-subsystem",
capture_content=True,
)
Note
All of the authentication parameters can also be provided through environment variables (CX_TOKEN
, CX_ENDPOINT
, etc.).
Usage
This section describes how to set up instrumentation for OpenAI.
Set up tracing
Automatic
Use the setup_export_to_coralogix
function to set up tracing and export traces to Coralogix. See the code snippet in the Authentication section.
Manual
Alternatively, you can set up tracing manually.
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
tracer_provider = TracerProvider(
resource=Resource.create({SERVICE_NAME: "ai-service"}),
)
exporter = OTLPSpanExporter()
span_processor = SimpleSpanProcessor(exporter)
tracer_provider.add_span_processor(span_processor)
trace.set_tracer_provider(tracer_provider)
Instrument
To instrument all clients, call the instrument
method.
Uninstrument
To uninstrument clients, call the uninstrument
method.
Full example
from llm_tracekit import OpenAIInstrumentor, setup_export_to_coralogix
from openai import OpenAI
# Optional: Configure sending spans to Coralogix
# Reads Coralogix connection details from the following environment variables:
# - CX_TOKEN
# - CX_ENDPOINT
setup_export_to_coralogix(
service_name="ai-service",
application_name="ai-application",
subsystem_name="ai-subsystem",
capture_content=True,
)
# Activate instrumentation
OpenAIInstrumentor().instrument()
# OpenAI Usage Example
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "user", "content": "Write a short poem on open telemetry."},
],
)
Enable message content capture
By default, message content, such as the contents of the prompt, completion, function arguments and return values, are not captured. To capture message content as span attributes:
Pass
capture_content=True
when callingsetup_export_to_coralogix
.Set the environment variable
OTEL_INSTRUMENTATION_GENAI_CAPTURE_MESSAGE_CONTENT
totrue
.
Most Coralogix AI evaluations require message contents to function properly, so enabling message capture is strongly recommended.
Key differences from OpenTelemetry
- The
user
parameter in the OpenAI Chat Completions API is captured in the span as thegen_ai.openai.request.user
attribute. - The
tools
parameter in the OpenAI Chat Completions API is now captured in the span as thegen_ai.openai.request.tools
attribute. - User prompts and model responses are captured as span attributes instead of log events, as detailed below.
Semantic conventions
Attribute | Type | Description | Example | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
gen_ai.prompt.<message_number>.role | string | Role of message author for user message system , user , assistant , tool gen_ai.prompt.<message_number>.content string | Contents of user message | What's the weather in Paris? gen_ai.prompt.<message_number>.tool_calls.<tool_call_number>.id string | ID of tool call in user message | call_O8NOz8VlxosSASEsOY7LDUcP gen_ai.prompt.<message_number>.tool_calls.<tool_call_number>.type string | Type of tool call in user message | function gen_ai.prompt.<message_number>.tool_calls.<tool_call_number>.function.name string | The name of the function used in tool call within user message | get_current_weather gen_ai.prompt.<message_number>.tool_calls.<tool_call_number>.function.arguments string | Arguments passed to the function used in tool call within user message | {"location": "Seattle, WA"} gen_ai.prompt.<message_number>.tool_call_id string | Tool call ID in user message | call_mszuSIzqtI65i1wAUOE8w5H4 gen_ai.completion.<choice_number>.role string | Role of message author for choice | assistant gen_ai.completion.<choice_number>.finish_reason string | Finish reason for choice | stop , tool_calls , error gen_ai.completion.<choice_number>.content string | Contents of choice | The weather in Paris is rainy and overcast, with temperatures around 57°F gen_ai.completion.<choice_number>.tool_calls.<tool_call_number >.id string | ID of tool call in choice | call_O8NOz8VlxosSASEsOY7LDUcP gen_ai.completion.<choice_number>.tool_calls.<tool_call_number >.type string | Type of tool call in choice | function gen_ai.completion.<choice_number>.tool_calls.<tool_call_number >.function.name string | The name of the function used in tool call within choice | get_current_weather gen_ai.completion.<choice_number>.tool_calls.<tool_call_number >.function.arguments string | Arguments passed to the function used in tool call within choice | {"location": "Seattle, WA"} OpenAI-specific attributes
Theme Theme Home |